skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McKeon, Kelly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Compound floods are often thought of as large, infrequent floods during which extremes of coastal sea level and/or river flow combine with each other or additional factors (e.g., tides and rainfall) to induce major flooding. However, little is known about the potentially compound nature of more frequent, lower‐level floods. Here, we introduce the term “compound minor floods” to define minor floods composed of two or more water‐level sources. We use the Delaware River Estuary as a case study to investigate the prevalence and composition of these minor compound floods along the extent of a tidal river. We apply multiple linear regression to a 22‐year time series of coastal water levels and river discharge to establish the contributions of tides, nontidal open‐ocean effects, and river discharge to minor flood events at eight locations along the tidal Delaware River. We find that most minor flood events are compound in nature, requiring at least two components (e.g., tides and river discharge) to initiate flooding. We identify spatial structure in the relative importance of oceanographic and riverine contributions to minor flooding along the tidal reach of the estuary. These results suggest that incorporating fluvial components into minor flooding assessments is important to fully characterize flood risk along tidal rivers and estuaries. 
    more » « less